Неразрушающий контроль

Контроль сварных соединений рентгеновским излучением

Одним из самых распространенных на сегодняшний день методов контроля качества сварных соединений является рентгеновское излучение. Его также называют рентгено- и гаммаграфическим. Особенность этого метода заключается в том, что гамма-лучи способны проходить сквозь сварное соединение. Для фиксации результатов применяется специальная радиографическая пленка. В результате действия гамма-лучей на пленке возникает скрытый для обычного зрения рисунок. Его можно увидеть только после проявления и закрепления, как и в случае с фотообработкой. С целью лучшей проявки дефектов применяются концентраторы из металлических или флюоресцентных экранов.

Известно, что рентгеновские лучи являются теми же электромагнитными колебаниями, имеющие определенную частоту. Принимает излучения специальная рентгеновская трубка. Она оснащена двумя электродами, расположенными в баллоне. Процесс образования излучения возникает в момент торможения электронов, которые задерживаются анодом. При этом электрон принимает кинетическую энергию, равную E=eU. Когда достигается минимальная длина волны Emax=hc/λ0.

электронов на аноде, генерируется максимальное количество рентгеновского излучения. Учитывая, что h – постоянная Планка и равна 6,625∙10-34 Дж/с, с – это скорость света в вакууме, а е – заряд электрона равный 1,602∙ 10-19 Кл, то приравняв Е и Emax, можно определить минимальную длину волны λ0 и она будет равна

Если увеличивать напряжение на аноде, то длина волны становится меньше. В результате излучается спектральный состав рентгеновского излучения. В результате этого увеличивается максимальная энергия непрерывного спектра. Если изменять ток анодной трубки, то аналогично изменяется и интенсивность рентгеновского излучения. Дозу облучения можно определить из произведения анодного тока и длительности времени, на протяжении которого происходило воздействие.

Рентгеновская трубка обладает очень малым КПД, которые не превышает 2% от всей энергии электронов. Все остальное уходит на нагрев, который выводится специальной средой наружу. Для регистрации рентгеновского излучения, прошедшего через сварное соединение, используется эмульсия специальной радиографической пленки.

1. Радиографическая техническая плёнка Р8Ф; 2. Рентгеновская плёнка Agfa D5

Так как любая используемая для контроля качества сварки радиографическая пленка не имеет идеального участка на кривой, то контрастность и градиент определяется индивидуально из соотношения γd = dD/(d lg D). D – Плотность почернения пленки. Если используется безэкранная пленка, то плотность почернения в них Dб определяется пропорциональностью проявленных пятен. Экспозиция X при этом определяется количеством квантов, которые прошли через пленку. В таком случае Dб = Dmaх, k – чувствительность пленки, а Dmaх является величиной максимальной плотности почернения. Если используется экран, то уравнение будет иметь вид:

Пленки обладают, так называемой, спектральной чувствительностью. Это свойство указывает на способность получать разные плотности почернения с одинаковой экспозицией, но разной дозой. Спектральная чувствительность обозначается буквой Q и определяется по формуле

Все радиографические пленки характеризуются разрешающей способностью. Она определяет количество различимых штриховых линий на расстоянии 1 мм. Наиболее качественными в этом плане являются пленки типов РТ-4 М и РТ-5. Они также являются мелкозернистыми

Контроль с использованием усиливающих кранов позволяет получить более существенную картину, но при этом важно правильно выбрать материал для изготовления экрана, которым может быть олово, свинец, вольфрам. Материал выбирается в зависимости от величины питающего напряжения до 100 кВ и свыше 100 кВ. В промышленных масштабах для проведения контроля качества сварного шва используют пленку РТ-СШ

В качестве экрана применяется лавсан с покрытием из тяжелых элементов, заменяющих свинец. Выделяют 4 класса рентгенографических снимков.   

В промышленных масштабах для проведения контроля качества сварного шва используют пленку РТ-СШ. В качестве экрана применяется лавсан с покрытием из тяжелых элементов, заменяющих свинец. Выделяют 4 класса рентгенографических снимков.   

Физический контроль сварочных швов

Среди множества методов контроля качества сварных швов отдельное место занимают физические, среди которых:

  1. Радиационный метод контроля. Он включает в себя рентгено-и гаммо-графический метод, основан на способности рентгеновских лучей проходить сквозь непрозрачные предметы. В таком случае дефекты, которые чаще всего бывают пустотами, на рентгеновском снимке выглядят в виде пятен или полос. Гамма-излучение действует по такой же системе, но имеет более низкую чувствительность. Бракуется изделие при выявлении следующих дефектов: шлаковые включения единичные и цепочкой, а также поры.
  2. Ультразвуковой метод. Основан на возможности ультразвука проникать внутрь конструкции и отражаться от дефектов.
  3. Магнитный метод дефектоскопии. Проверяемый шов смазывают составом из масла и специального намагнимагниченного порошка само изделие также намагничивают с использованием тока, который пропускают через обмотку. Под влиянием магнитного поля частицы железного порошка больше распространяются вокруг дефектов.
  4. Гидравлические испытания. Сосуд наполняется водой и создается повышенное давление. Такой метод используется при испытании паровых и водяных котлов.
  5. Пневматические испытания – испытания сжатым воздухом.

Интересное: Особенности сварки алюминия

Все детали испытательных процессов зависят от технических условий для каждого испытуемого объекта.


Контроль с помощью рентгена

Алгоритм выполнения

  1. К проверяемому предмету присоединяется источник электрического напряжения.
  2. Возникающее электрическое поле, обладает точками с одинаковым потенциалом, создающими эквипотенциальные линии.
  3. На поврежденном участке значительно снижается сила напряжения, измеряемая с помощью электродов.
  4. Полученная информация обрабатывается, и на основе ее анализа определяются габариты, ключевые параметры выявленных разрушений и генерируются способы его устранения.
  5. Составляется отчетность, содержащая выводы о соответствии требованиям техдокументации и возможности дальнейшего использования проверяемого объекта.

Электрический контроль не ограничивается электропотенциальной разновидностью и включает в себя множество других щадящих методов:

  • искровый, направленный на диагностику состояния изоляционного покрытия;
  • параметрический – количественная оценка состояния изоляционного покрытия;
  • емкостный, контролирующий стандарты полупроводников и диэлектриков;
  • термический, контролирующий химсостав материалов;
  • электронной эмиссии, направленной на изучение микрокристаллических поверхностей;
  • электростатического порошка – действует аналогично магнитопорошковому методу.

Акустические методы неразрушающего контроля

Акустические
МНК основаны на регистрации и анализе параметров упругих волн, которые
возбуждаются и/или  возникают в объекте
контроля. При использовании волн ультразвукового диапазона допустима замена
названия группы методов на «ультразвуковые».

Упругие
волны, вернее, их параметры, тесно связаны с некоторыми свойствами материалов
(анизотропией, плотностью, упругостью и др.), а если принять во внимание тот
факт, что акустические свойства твёрдых объектов и воздуха значительно
разнятся, становится понятным, почему с помощью акустических МНК возможно
выявить наличие малейших дефектов (их ширина может не превышать 10-6 мм),
определить качество шлифовки и толщину поверхности. Сфера
использования акустических методов достаточно широка, например ультразвуковые дефектоскопы

Они могут применяться ко
всем проводящим акустические волны материалам

Сфера
использования акустических методов достаточно широка, например ультразвуковые дефектоскопы. Они могут применяться ко
всем проводящим акустические волны материалам.

В
зависимости от характера взаимодействия с контролируемым объектом, различают
пассивные и активные методы контроля. В первом случае регистрируются волны,
возникающие в самом объекте (по шумам работающего устройства вполне можно
судить о его исправности, неисправности и даже её характере). К активным же относятся
методы, основанные на измерении интенсивности пропускаемого или отражаемого
объектом акустического сигнала. Результаты применения активного акустического
МНК  представлены на рисунке 8.

В левой
части рисунка (а)  изображен объект, не
имеющий дефектов и соответствующий его проверке график, на котором отображены
информативные параметры акустической волны (в данном случае время прохождения
через объект). Справа (б) изображен график, соответствующий наличию дефекта.


Рис.8 – Результат применения активного акустического МНК
(отражения)

Вихретоковый метод неразрушающего контроля

Способ основан на наведении в исследуемом объекте вихревых (приповерхностных) токов малой интенсивности и частотой до нескольких мегагерц помещения его в электромагнитное поле, создаваемое вихретоковым преобразователями измерения. Применяется для металлов и других электропроводящих материалов. На основании неоднородностей приповерхностного вихревого поля можно судить о наличии неоднородностей и других дефектов в наружном слое металла (до глубины в несколько миллиметров). Измерения с высокой точностью определяют также дефекты лакокрасочных и защитных покрытий, нанесенных на металлическую деталь. В роли вихретокового преобразователя служить мощная катушка индуктивности, генерирующая высокочастотное электромагнитное поле. Вихревые токи, наводимые этим полем в приповерхностном слое металла, измеряют этой же катушкой (совмещенная схема) или отдельной (разнесенная схема). По пространственной картине распределения интенсивности измеренных токов определяют места неоднородностей, вносящих искажение в поле.

Вихретоковый метод неразрушающего контроля

На применении вихревых токов основано большое количество различных конструкций дефектоскопов, специализирующихся на определении толщины и однородности листов металлопроката и покрытий на конструкциях, непрерывного измерения диаметра проволоки и пруткового проката во время их производства. Применяются вихретоковые устройства, наряду с ультразвуковыми, и для определения состояния лопаток турбин и других ответственных высоконагруженных узлов.

Радиоволновой метод неразрушающего контроля

Заключается в облучении исследуемого объекта радиочастотным излучением и измерении параметров прошедшей, отраженной или рассеянной электромагнитной волны.

Радиоволновой метод

Он применим к диэлектрическим, полупроводниковым материалам, а также к тонкостенным металлическим оболочкам и конструкциям, в которых хорошо распространяются радиоволны. Используется для проверки однородности, габаритов и формы изделий из пластика, резины, композитных материалов. Измеряют при этом амплитудные, фазовые или поляризационные характеристики волны. Неразрушающий контроль радиоволновым методом позволяет обнаружить в массе материала неоднородности, посторонние включения, некачественные клеевые и сварные соединения и другие дефекты.

Оптический метод неразрушающего контроля

Оптический способ дефектоскопии основан на анализе оптических эффектов, связанных с отражением, преломлением и рассеянием световых лучей поверхностью или объемом объекта.

Оптический метод

Внешние оптические методики позволяют определять чистоту и шероховатость поверхностей, особо важную в точном машиностроении. При измерении размеров мелких деталей применяется физическое явление дифракции, шероховатость поверхностей определяется на основе интерференционных измерений.

Внутренние дефекты возможно выявить лишь для прозрачных материалов, и здесь оптическим методикам нет равных по дешевизне и эффективности.

Выгодно отличаются они своей простотой и малой трудоемкостью и при нахождении пороков поверхностей, таких, как трещины, заусенцы и забоины.

Косвенные методы контроля

Подобные исследования проводятся, когда нужно оценить значение прочностных характеристик, используя их в качестве одного из нескольких факторов, дающих представление о техническом состоянии сооружения. Полученный результат не допускается использовать, если не была определена частная градуировочная зависимость (см.также статью «Защита бетона от влаги: способы и применяемые материалы»).

Ультразвуковое тестирование

Широкое распространение получил способ испытания бетона неразрушающим методом, подразумевающим использование ультразвуковых волн. При проведении операции устанавливается связь между скоростью колебаний и плотностью затвердевшей смеси.

На зависимость могут влиять самые различные факторы.

Демонстрируется проведение операции.

  • Фракция заполнителя и его количество в растворе.
  • Выбранный способ приготовления состава.
  • Степень уплотнения и напряжение.
  • Изменение расхода вяжущего вещества более, чем на 30 процентов.

Упругий отскок

Неразрушающий контроль прочности бетона этим методом позволяет установить зависимость между прочностью на сжатие и упругостью материала. При исследовании металлический боек основного прибора после удара отдаляется на определенное расстояние, которое является показателем прочностных качеств конструкции.

Так осуществляется проверка отскоком.

Во время испытаний приспособление фиксируется так, чтобы стальной элемент плотно соприкасался с бетонной поверхностью, для чего применяются специальные винты. После крепления маятник устанавливается горизонтально. В этом случае он защелкивается непосредственно спусковым крючком.

Приложив устройство перпендикулярно к плоскости, нажимают на курок. Боек взводится автоматически, после чего самостоятельно освобождается и совершает удар под действием особой пружины. Металлический элемент отскакивает на какое-то расстояние, которое измеряется специальной шкалой.

Схема движения внутреннего стержня.

В качестве основного инструмента для испытаний используется прибор системы КИСИ, который имеет достаточно сложное строение. Прочность затвердевшей смеси удается определить на основании данных устройства после проведения 6-7 тестов по специальному графику.

Придание ударного импульса

Благодаря этому методу исследования можно зафиксировать энергию удара, освобождающуюся в момент соприкосновения бойка с бетонной конструкцией. Положительным моментом считается то факт, что приборы неразрушающего контроля бетона, работающие по принципу ударного импульса, имеют компактные размеры. Однако их цена достаточно высока.

Результаты испытаний составов разных классов.

Пластическая деформация

При проведении операции осуществляется измерение размеров следа, оставленного на бетонной поверхности стальным элементом. Метод считается несколько устаревшим, но в связи с дешевизной оборудования он продолжает активно использоваться в строительной среде. После нанесенного удара измеряются оставшиеся отпечатки.

Устройства для определения прочности такого типа базируются на вдавливании стержня непосредственно в плоскость путем статического давления нужной силы или обычного удара. В качестве основных приборов используются маятниковые, молотковые и пружинные изделия.

Ниже приводятся условия проведения операции.

Молоток Кашкарова для проведения пластической деформации.

  • Испытания должны осуществляться на участке, площадь которого колеблется от 100 до 400 кв. см.
  • При проведении данной операции следует делать не менее пяти измерений с высокой точностью.
  • Ударная сила должна иметь перпендикулярное направление относительно испытываемой плоскости.
  • Для определения прочностных характеристик требуется гладкая поверхность, которая достигается формованием в опалубке из металла.

Тестирование без использования приборов

Выше были рассмотрены исследования, проводимые при помощи специальных устройств, однако в случае необходимости незамысловатые испытания можно осуществить своими руками. Точную информацию о прочностных качествах получить не удастся, но определить класс бетона вполне реально.

Сначала подготавливается необходимый инструмент: зубило и молоток, вес которого колеблется в пределах 400-800 г. Ударно-режущее приспособление устанавливается перпендикулярно поверхности.

По нему наносятся удары средней силы, по следам которых и будет производиться анализ.

Использование молотка и зубила.

  • Еле заметный отпечаток может свидетельствовать о том, что затвердевшая смесь относится к классу B25 и выше.
  • Сильно заметные следы на поверхности конструкции остаются обычно при использовании бетона B15.
  • Существенные углубления и наличие крошек позволяют отнести применяемый состав к классу B10.
  • Если же острие инструмента вошло в плоскость на глубину более 1 см, то возможно для работ использовался бетон B5.

Методы неразрушающего контроля качества сварных соединений

Визуальный контроль и измерения

Визуально-оптический контроль – это один из методов неразрушающего контроля оптического вида. Он основан на получении первичной информации об объекте при визуальном наблюдении или с помощью оптических приборов. Это органолептический контроль, т.е. воспринимаемый органами чувств (органами зрения) ГОСТ 23479-79 “Контроль неразрушающий. Методы оптического вида” устанавливает требования к методам контроля оптического вида. Визуальный метод контроля позволяет обнаруживать несплошности, отклонения размера и формы от заданных более 0,1 мм при использовании приборов с увеличением до 10х. Визуальный контроль, как правило, производится невооруженным глазом или с использованием увеличительных луп 2х до 7х. В сомнительных случаях и при техдиагностировании допускается увеличение до 20х.

Визуальный контроль выполняется до проведения других методов контроля. Дефекты, обнаруженные при визуальном контроле, должны быть исправлены до проведения контроля другими методами.

Радиографический контроль

Радиационный вид неразрушающего контроля в соответствии с ГОСТ 18353-79 делится на методы: радиографический, радиоскопический, радиометрический. Радиографический метод контроля основан на преобразовании радиационного изображения контролируемого объекта в радиографический снимок. Требования к радиографическому контролю регламентированы ГОСТ 7512-82 “Контроль неразрушающий. Сварные соединения. Радиографический метод”.

Схема просвечивания рентгеновскими лучами:
1 – рентгеновская трубка; 2 – кассета; 3 – фотопленка; 4 – экраны.

Метод ультразвуковой дефектоскопии

Данный метод относится к акустическому виду неразрушающего контроля (ГОСТ 3242-79), применяется при толщине металла шва не менее 4 мм. Он основан на использовании ультразвуковых волн, представляющих собой упругие колебания материальной среды с частотой выше 0,5-0,25 МГц (выше той, которую способны воспринимать слуховые органы человека). В этом методе контроля (ГОСТ 14782-86) используется способность ультразвуковых волн отражаться от границы раздела двух сред, обладающих разными акустическими свойствами. Когда при прохождении через сварной шов ультразвуковые волны встречают на своем пути дефекты (трещины, поры, шлаковые включения, расслоения и т. д.), они отражаются от границы раздела металл–дефект и могут быть зафиксированы при помощи специального ультразвукового дефектоскопа.

Магнитные методы контроля

Магнитные методы контроля основаны на принципе использования магнитного рассеяния, возникающего над дефектом при намагничивании контролируемого изделия. Например, если сварной шов не имеет дефектов, то магнитные силовые линии по сечению шва распределяются равномерно. При наличии дефекта в шве вследствие меньшей магнитной проницаемости дефекта магнитный силовой поток будет огибать дефект, создавая магнитные потоки рассеяния.

Прохождение магнитного силового потока по сварочному шву:
а – без дефекта; б – с дефектом

В соответствии с ГОСТ 18353-79 в зависимости от способа регистрации потоков рассеяния различают три магнитных метода контроля: магнитопорошковый, индукционный, магнитографический. Наиболее распространен магнитопорошковый метод или магнитопорошковая дефектоскопия (МПД).

Вихретоковый контроль

Методы вихретокового контроля основаны на регистрации изменения электромагнитного поля вихревых токов, наводимых возбуждающей катушкой в электропроводящем объекте контроля. Вихревые токи – это замкнутые токи, индуктированные в проводящей среде изменяющимся магнитным полем. Если через катушку пропускать ток определенной частоты, то магнитное поле этой катушки меняет свой знак с той же частотой. Интенсивность и распределение вихревых токов в объекте зависят от его геометрических, электромагнитных параметров и от взаимного расположения изме­рительного вихретокового преобразователя (ВТП) и объекта. В качестве преобразователя используют обычно индуктивные катушки (одну или несколько). Синусоидальный или импульсный ток, действующий в катушках ВТП, создает электромагнитное поле, которое возбуждает вихревые токи в электропроводящем объекте. Электромагнитное поле вихревых токов воздействует на катушки преобразователя, наводя в них ЭДС или изменяя их полное сопротивление. Регистрируя напряжение на зажимах катушки (трансформаторный вихретоковый метод) или ее сопротивление (параметрический вихретоковый метод) получают информацию о свойствах объекта и о положении преобразователя относительно него.

Радиоволновой метод неразрушающего контроля

Заключается в облучении исследуемого объекта радиочастотным излучением и измерении параметров прошедшей, отраженной или рассеянной электромагнитной волны.

Радиоволновой метод

Он применим к диэлектрическим, полупроводниковым материалам, а также к тонкостенным металлическим оболочкам и конструкциям, в которых хорошо распространяются радиоволны. Используется для проверки однородности, габаритов и формы изделий из пластика, резины, композитных материалов. Измеряют при этом амплитудные, фазовые или поляризационные характеристики волны. Неразрушающий контроль радиоволновым методом позволяет обнаружить в массе материала неоднородности, посторонние включения, некачественные клеевые и сварные соединения и другие дефекты.

Устройства электрического НК

Электроизмерительные приборы регулируются ГОСТ 25315-82, которым предусматривается применение:

  1. Электрических преобразователей, конструктивно зависимых от агрегатного состояния контролируемой среды. При наиболее сложном жидком или газообразном состоянии выбор устройства осуществляется в соответствии с такими критериями, как его пропускная способность и характер взаимодействия среды с электродами.
  2. Измерители состава и структуроскопы применяются для определения состава и структуры проверяемого материала по значениям диэлектрической проницаемости, коэффициенту или тангенсу угла потерь.
  3. Электропотенциальные приборы, основанные на измерении разности потенциалов на проверяемом участке, когда через него пропускается ток, они применяются для измерения поверхностных пустот и трещин глубиной до 120 мм.
  4. Термоэлектрические устройства, используемые в сортировке изделий по маркам стали, экспресс-анализе металлов в процессе плавки или в слитках, измерении толщины гальванического покрытия, изучении механизмов усталости металлов.
  5. Электроискровые, электростатические и трибоэлектрические дефектоскопы, контролирующие сплошности диэлектрических материалов и покрытий трубопроводов.

Виды неразрущающего контроля

Данный документ оформляется на официальном бланке и включает в себя информацию о видах неразрушающего контроля, наименовании объектов и области аккредитации.

Проведение регулярного неразрушающего контроля особенно важно при эксплуатации жизненно важных изделий, компонентов и конструкций

Применяются следующие виды (методы) неразрушающего контроля:

  • Визуальный и измерительный контроль.
  • Ультразвуковой:
  • Ультразвуковая дефектоскопия.
  • Ультразвуковая толщинометрия.
  • Магнитный:
  • Магнитопорошковый.
  • Контроль проникающими веществами:
  • Капиллярный.
  • Вибродиагностический.
  • Тепловой.

Предисловие

  • 1 РАЗРАБОТАН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт оптико-физических измерений» (ФГУП «ВНИИОФИ»)

  • 2 ВНЕСЕН Техническим комитетом по ТК 371 «Неразрушающий контроль»

  • 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 30 октября 2019 г. № 1071 «ст

  • 4 ВЗАМЕН ГОСТ Р 56542—2015

Пробила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. Nt 162-ФЗ «О стандартизации е Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

Стзндартииформ. оформление. 2019

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и рас* пространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий